- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Wise, John H. (2)
-
Abruzzo, Matthew (1)
-
Choi, Ena (1)
-
Conroy, Charlie (1)
-
Garg, Prerak (1)
-
Horvath, Vincent A. (1)
-
Johnson, Benjamin D. (1)
-
Kelly, Ashley J. (1)
-
Kimock, Benjamin (1)
-
Li, Qi (1)
-
Lovell, Christopher C. (1)
-
Lower, Sidney (1)
-
McClellan, B. Connor (1)
-
Narayanan, Desika (1)
-
Privon, George C. (1)
-
Roberts, Jonathan (1)
-
Robitaille, Thomas (1)
-
Sethuram, Snigdaa (1)
-
Sethuram, Snigdaa S. (1)
-
Sharma, Ray S (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Theoretical models of galaxy formation and evolution are primarily investigated through cosmological simulations and semi-analytical models. The former method consumes core-hours explicitly modeling the dynamics of the galaxies, whereas the latter method only requires core-hours foregoing directly simulating internal structure for computational efficiency. In this work, we present a proof-of-concept machine learning regression model, using a graph neural network architecture, to predict the stellar mass of high-redshift galaxies solely from their dark matter merger trees, trained from a radiation hydrodynamics cosmological simulation of the first galaxies.more » « less
-
Narayanan, Desika; Turk, Matthew J.; Robitaille, Thomas; Kelly, Ashley J.; McClellan, B. Connor; Sharma, Ray S; Garg, Prerak; Abruzzo, Matthew; Choi, Ena; Conroy, Charlie; et al (, The Astrophysical Journal Supplement Series)
An official website of the United States government
